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The microwave tomography is one of effective technique for estimating the material distribution. When the objective function is 

defined, some optimization techniques can be introduced into the microwave tomography. The line search strategy is usually used for 
updating solution in gradient-based method. However, this strategy impacts strongly convergence property and elapsed time. On the 
other hand, when the quasi-Newton (QN) method is implemented, the cost for line search would be successfully reduced. This paper 
investigates the performance of the QN method in 1-D inverse scattering problem. Furthermore, to reduce the computational cost for 
line search, the linear approximation of derivative of objective function is applied to determination of the step size. 
 

Index Terms—FDTD method, inverse problems, optimization methods, tomography. 
 

I. INTRODUCTION 

HE microwave tomography is a hopeful technique for 
nondestructive testing, medical imaging, geophysical 

exploration, etc. The distribution of permittivity , magnetic 
permeability , and conductivity  is reconstructed by making 
use of the measurement of scattering waves. 

When the objective function is defined, some optimization 
techniques can be introduced into microwave tomography. The 
reconstruction algorithm based on a gradient-based method [1] 
has been developed. The line search strategy is usually carried 
out in order to accelerate convergence of objective function. 
Because this strategy affects the elapsed time, the cost 
reduction of line search is desired for the large scale problem. 
On the other hand, the quasi-Newton (QN) method [2] is 
widely implemented in optimization problems. Because the 
converged solution is usually obtained by QN method with 
step size   1.0, the line-search cost might be successfully 
reduced. However, the performance of QN method has not 
been demonstrated in detail on inverse scattering problem. 

This paper investigates the performance of QN method for 
estimating relative permittivity in 1-D inverse scattering 
problem. The convergence property using QN method is 
compared with conjugate gradient (CG) method. Furthermore, 
to accelerate the convergence and computational speed, the 
line search based on linear approximation of derivative of 
objective function [3] is newly introduced into QN method. 

II. OPTIMIZATION TECHNIQUE 

A. Quasi Newton (QN) Method 
Fig. 1 shows the procedure of QN method. Here, F(xk) 

denotes the objective function. The relative permittivity r in 
target domain is stored on the vector xk. Hk represents n n  
square matrix, where n is the number of unknowns. In step 2, 
to determine the search direction dk, the design sensitivity 

( )kF x  is required. To efficiently calculate sensitivity, time-
domain adjoint-variable method (AVM) [1], [4] is performed 
in this paper. In step 3, a step size  is determined so that the 

objective function can decrease monotonously. One of the line 
search technique is the golden section (GS) technique. 
However, because the evaluation of objective function is 
repeated until convergence, this approach might be inadequate 
from the viewpoint of elapsed time. 

 
Fig. 1.  Algorithm of QN method. 

B. Line Search Technique based on Linear Approximation of 
Derivative of Objective Function 
To efficiently determine the step size , the line search 

strategy based on linear approximation of F    [3] is newly 
applied to QN method. Fig. 2 shows the procedure of linear 
approximation of F   . The one-dimensional nonlinear 
equation 0F     is approximately solved by the two-point 
linear interpolation as shown in Fig. 2. Here, F    is 
evaluated as follows: 
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Although the sensitivity analysis is newly added, the cost of 
this approach is lower than that of GS method. In this paper, 
1 and 2 is set to 0.5 and 1.5, respectively. 

 
Fig. 2.  Outline of line search technique based on linear approximation of

F   . 
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Step 1 (Initialization) Let x0 be an initial guess. Set 

Step 2 (Calculation of search direction) 

Step 3 (Determination of step size) 

Step 4 (Update of solution) 

Step 5 (Convergence check) 
is satisfied, QN iteration is terminated;

Step 7 (Update of matrix)

Step 8 (Update of iteration index) , return to Step 2.

Step 6 (Update of vectors)

otherwise go to Step 6.When 
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On the other hand, because H0 is set to the unit matrix in 
this paper, d0 is identical to steepest descent direction. 
Consequently, the line search based on Fig. 2 might be 
unsuitable for determining 0. Therefore, the determination of 
step size is performed with Taylor expansion of objective 
function as follows: 
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As a result, 0 can be obtained as: 
(0) 2

0 0|| ( ) ||F F   x .                                                   (3) 

In this paper, initial line search is performed by solving (3), 
and k (k > 1) is determined by the procedure shown in Fig. 2. 

III. NUMERICAL RESULT 

Fig. 3 shows the 1-D analyzed model. Here, L (= 450 mm) 
is the maximum of x. The value shown in parentheses denotes 
the true value of relative permittivity. The objective function is 
formulated as follows: 
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where Tmax is the time duration of the measurement, Em(t) is 
the measured electric field, and E(r, t) is the electric field 
derived from the finite-difference time-domain (FDTD) 
method. Each layer is discretized by 10 cells, and all layers is 
assumed to a lossless material. A raised cosine pulse [5] is 
adopted as wave source. The search space of relative 
permittivity is from 1 to 12, and all initial  r is set to 1. When 
the maximum correction of relative permittivity max| |r  is 
less than 103, the estimation process is terminated. The 
convergence criterion for golden section (GS) strategy is set to 
108. 

Fig. 4 shows the convergence of objective function. In the 
case without line search (  1.0), the convergence speed of 
QN method is superior to that of CG method. On the other 
hand, when the GS technique is applied to both optimization 
methods, it can be seen that the convergence characteristic is 
improved in comparison with Fig. 4 (a). In this case, the 
convergence of CG method with GS is faster than that of QN  

 
Fig. 3.  Laminated model for estimating relative permittivity. 

          
(a)                                                 (b) 

Fig. 4.  Convergence property of objective function. (a) without line search ( 
 1.0). (b) with line search. 

method with GS. The QN method with developed line search 
also has the ability to improve the convergence as shown in 
Fig. 4 (b). Table I shows the performance of optimization 
methods. kopt is the number of optimization step. NFDTD and 
NAVM denote the total required number of FDTD and AVM in 
line search, respectively. In the line search based on Fig. 2, 
because  can be determined by the two-point linear 
interpolation, the cost for developed line search is smaller than 
that for GS. Therefore, the elapsed time using QN with 
developed line search is the shortest among all methods. 

Fig. 5 shows the characteristic of objective function and
F   . In Fig. 6 (a), the step size closer to exact value ex is 

obtained. At the 9th iteration, the discrepancy between 
linearized F    and exact F    is minor so that the 
impact of higher order term in Taylor expansion becomes 
small with the approach to the true value. Fig. 6 shows the 
behavior of  during optimization process. It can be seen that 
 approaches to 1.0 in later QN iteration. In the full paper, the 
other numerical results will be illustrated. 

TABLE I 
RESULTANT PERFORMANCE OF OPTIMIZATION METHODS 

 

       
(a)                                                   (b) 

Fig. 5.  Performance of line search technique based on linear approximation of 
∂F / ∂ in QN method. (a) 2nd iteration. (b) 9th iteration. 

          
(a)                                                 (b) 

Fig. 6.  Changes of step size. (a) CG method with GS. (b) QN method with 
line search techniques. 
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